CMCP730D

Universal Signal Conditioner/Relay Module with LCD Display

Whilst every effort has been taken to ensure the accuracy of this document, we accept no responsibility for damage, injury, loss or expense resulting from errors or omissions, and reserve the right of amendment without notice.

STI Vibration Monitoring
This document may not be reproduced in any way without the prior written permission of the company.

January 2021

CONTENTS

1. INTRODUCTION 3
1.1 Hardware Features 3
1.2 Isolation Details 3
2. UNPACKING 3
3. QUICK START GUIDE 4
4. CONNECTIONS 5
5. CONFIGURING THE CMCP730D 7
5.1 Voltage Input: 8
5.2 Current Input 9
5.3 Millivolt (mV) Input 10
5.4 Potentiometer Input 11
5.5 Thermocouple Input 12
5.6 RTD Input 13
5.7 Output Configuration 14
6. CALIBRATING THE CMCP730D 15
6.1 Main menu and Set Point menu 15
6.2 Set Points 1 and 2, Hysteresis Points 1 and 2 17
6.3 Relay 1 and Relay 2 17
6.4 Led 1 and Led 2 18
6.5 Output Span and Output Zero 18
6.6 Input Units 18
6.7 Input Span and Zero 19
6.8 Relay Test 19
6.9 Output Options 19
6.10 Relay Time Delays 20
7. INSTALLATION 22
8. TROUBLESHOOTING 23
8.1 Incorrect Reading 23
8.2 Sensor Failure 23
9. SPECIFICATIONS (@ $25^{\circ} \mathrm{C}$) 24

STI Vibration Monitoring Ltd 1010 East Main Street League City, TX 77573
www.stiweb.com

1. INTRODUCTION

1.1 Hardware Features

The CMCP730D is a universal input dual trip amplifier with isolated retransmitted output. It can accept virtually every type of analogue input signal from millivolts to $40 \mathrm{Vdc}, \mathrm{mA}$, thermocouples, RTD's etc. It produces 2 types of analogue output; voltage and mA source. It has 2 configurable trip action relay outputs, with optional latching operation and a variety of time delay options.

The input value and setpoints can be viewed on a 4 digit display which is also used to display menu options when the unit is configured.

The unit can be powered by any DC voltage between 16 and 36 Vdc or 16 and 32 Vac .

The instrument is packaged in a compact 22.5 mm wide enclosure which can be mounted on standard TS35 DIN-rail.

1.2 Isolation Details

The CMCP730D has full 3 port isolation of 1000 V between the Input Stage, Output Stage and Power Supply for functional reasons.

2. UNPACKING

The instrument should be carefully inspected for signs of damage which may have occurred in transit. In the unlikely case that damage has been sustained, DO NOT use the instrument, but please retain all packaging for our inspection and contact your supplier immediately.

The instrument comes with the following items as standard:
1 CMCP730D Isolating Dual Trip Signal Converter
1 CMCP730D User Guide
Unless otherwise noted, the default configuration is $4-20 \mathrm{~mA}$ input and $4-20 \mathrm{~mA}$ source output. Relay 1 will energise above 16 mA , relay 2 will energise below 8 mA . The other default options are listed in section 5. If re-configuration is required please refer to sections 4 and 5 of this manual.

3. QUICK START GUIDE

This example shows how easy it is to configure a CMCP730D with $4-20 \mathrm{~mA}$ Input, $0-10 \mathrm{~V}$ Output, $0-100 \%$ on display.

Before starting, make sure power supply, inputs and outputs are disconnected.
Open the CMCP730D case and slide out the PCB (see page 6
Set up the input switches to the required input type and range (see pages 7-12
For $4-20 \mathrm{~mA}$ Input, $\mathrm{S} 1: 2,3,9,10,11,12$ on and $\mathrm{S} 2: 1,2,7,8$ on (S2 closest to relays
Set up the output switch to mA or voltage (see page 13
For $0-10 \mathrm{~V}$ Output the switch should be on (yellow switch closest to edge of PCB
Refit the PCB, connect up inputs, outputs and power then switch on (see page 5
Access the main menu (see page 14 then push raise to cycle up to 7. Output Span Apply full scale input value (20 mA
Push \& release both buttons to enter Span Adjust sub menu and adjust output (10V
Push \& release both buttons to return to main menu
Push raise to cycle up to 8. Output Zero
Apply zero scale input value (4 mA
Push \& release both buttons to enter Zero Adjust sub menu and adjust output (0V
Push \& release both buttons to return to main menu
Push raise to cycle up to 9. Input Units
Push \& release both buttons to enter Input Units sub menu \& select units (\% 2 DP
Push \& release both buttons to return to main menu

Push raise to cycle up to 11. Input Span
Push \& release both buttons to enter Input Span sub menu and adjust value to match the full scale input value used when 7. Output Span was adjusted (100.00%
Push \& release both buttons to return to main menu

Push raise to cycle up to 12 . Input Zero
Push \& release both buttons to enter Input Zero sub menu and adjust value to match the zero scale input value used when 8 . Output Zero was adjusted (0.00%
Push \& release both buttons to return to main menu
Inputs, outputs and input display are all calibrated now. Set Point 1 is 16.00%, Set Point 2 is 8.00%. Use the other main menu options to adjust parameters as required
(see pages 14-20. When all changes have been made, return to run mode from main menu by pushing and holding both buttons until OK is displayed then release.

4. CONNECTIONS

The CMCP730D is housed in a compact DIN rail mounting enclosure, with 16 terminals, arranged in 4 rows of 4 terminals. Two rows are at the top of the front panel and 2 rows are at the bottom. The relay terminals are on the top row and the sensor input terminals and the power supply and analogue outputs are on the bottom rows.

The diagram below shows how to connect all the different input, output and power supply types.

\qquad

Page 6

5. CONFIGURING THE CMCP730D

! WARNING !
 DO NOT OPEN UNIT OR ADJUST SWITCHES WITH POWER SUPPLY, INPUT OR OUTPUT CONNECTED

The CMCP730D is an extremely versatile device which can support many different types of input. The unit is configured by turning the power off, selecting the internal switch settings required and turning the power back on. Further options are chosen using the menu system via the display.

To open the CMCP730D, 2 catches just below the outer terminal blocks must be pushed in gently, one at a time. The front of the case can then be pulled and the unit will come out of the box.

There are 2 switch banks, S1 and S2, a link L201 and a single switch S3

Switch S1, S2 and Link L201 configure the input type and range, and switch S3 configures the output type. The switch settings are explained in the next few pages. The diagrams refer to switch positions 0 and 1 , with 0 being OFF and 1 being ON. This is illustrated in the picture above.

5.1 Voltage Input:

Select the range from the table below and set Switch S1 to the required values.

Voltage	Switch S1											
	1	2	3	4	5	6	7	8	9	10	11	12
0-1V	0	0	0	0	0	1	0	0	1	1	0	0
0-2V	0	0	0	1								0
0-4V	0	0	1	0								0
0-5V	0	1	0	0								0
0-7.5V	1	0	0	0								0
0-8V	0	0	1	1								0
0-10V	0	1	0	1								0
$0-15 \mathrm{~V}$	1	0	0	1								0
0-20V	0	1	1	0								0
0-30V	1	0	1	0								0
0-40V	0	1	1	1								0
1-5V	0	1	0	0								1
-5 to +5 V	1	1	0	0				\downarrow				1
-10 to +10V	1	1	0	1	0	1	0	0	1	1	0	0

Then select the required setting from the table below for switch S2.

	Switch S2											
	1	2	3	4	5	6	7	8	9	10	11	12
$\begin{gathered} 0-30 \mathrm{~V} \& 0-40 \mathrm{~V} \\ \text { Ranges } \end{gathered}$	0	0	1	1	0	0	1	1	0	0	0	0
All other Ranges Listed Above	0	0	1	0	1	0	1	0	0	0	0	0

! WARNING !
DO NOT OPEN UNIT OR ADJUST SWITCHES WITH POWER SUPPLY, INPUT OR OUTPUT CONNECTED

5.2 Current Input

Select the range from the table below and set Switch S1 to the required values.

	Switch S1											
	1	2	3	4	5	6	7	8	9	10	11	12
0-1mA	0	0	0	0	0	0	0	0	1	1	1	0
0-2mA	0	0	0	1								0
0-4mA	0	0	1	0				-				0
$0-5 \mathrm{~mA}$	0	1	0	0								0
0-8mA	0	0	1	1								0
$0-10 \mathrm{~mA}$	0	1	0	1								0
0-15mA	1	0	0	1								0
0-20mA	0	1	1	0								0
$0-30 \mathrm{~mA}$	1	0	1	0								0
4-20mA	0	1	1	0								1
$4-40 \mathrm{~mA}$	0	1	1	1								1
4-30mA	1	0	1	0								1
-5 to +5 mA	1	1	0	0				∇				1
-10 to +10 mA	1	1	0	1	0	0	0	0	1	1	1	0

Then select the required setting from the table below for switch S2.

5.3 Millivolt (mV) Input

Select the range from the table below and set Switch S1 to the required values.

	Switch S1												
	1	2	3	4	5	6	7	8	9	10	11		2
$0-25 \mathrm{mV}$	0	0	0	0	0	0	0	1	1	1	0		0
0-50mV	0	0	0	1									
0-100mV	0	0	1	0									
$0-125 \mathrm{mV}$	0	1	0	0									
0-150mV	1	0	0	0									
0-200mV	0	0	1	1									
0-250mV	0	1	0	1									
$0-300 \mathrm{mV}$	1	0	0	1									
$0-500 \mathrm{mV}$	0	1	1	0									
$0-600 \mathrm{mV}$	1	0	1	0									
0-1000mV	0	1	1	1									
0-1200mV	1	0	1	1									
-125 to +125 mV	1	1	0	0									
-125 to +1000 mV	1	1	1	1	0	0	0	1	1	1	0		0

And then select the required setting from the table below for switch S 2 .

	Switch S2											
	1	2	3	4	5	6	7	8	9	10	11	12
All Unipolar Ranges (e.g. $0-500 \mathrm{mV}$)	0	1	0	0	0	0	1	1	0	0	0	0
$\begin{aligned} & \text { Bipolar Ranges } \\ & \text { (e.g. } \\ & -125 \text { to }+125 \mathrm{mV} \text {) } \end{aligned}$	0	1	0	0	1	0	1	0	0	0	0	0

5.4 Potentiometer Input

Select the range from the table below and set Switch S1 to the required values.

Potentiometer	Switch S1											
	1	2	3	4	5	6	7	8	9	10	11	12
2 Wire 0-125R	0	0	0	0	0	0	0	1	1	1	0	1
2 Wire 0-250R	0	0	0	1								
2 Wire 0-500R	0	0	1	0								
2 Wire 0-625R	0	1	0	0								
2 Wire 0-750R	1	0	0	0								
2 Wire 0-1K	0	0	1	1	0	0	0	1	1	1	0	1
If option fitted: 3 Wire from												
0-1K to 0-100K	0	0	0	0	0	1	0	1	1	1	1	0

Then select the required setting from the table below for switch S2.

Potentiometer	Switch S2											
2 Wire Potentiometer	1	2	3	4	5	6	7	8	9	10	11	12
	0	1	0	0	,	0	0	1	0	0	0	1
If option fitted: 3 Wire	ALSO FIT LINK L201											
Potentiometer	0	0	1	,	0	0	1	1	0	0	1	0

Please note that to use a 3 wire pot input link L201 must be fitted (see diagram on page 6 for its location).

! WARNING !

DO NOT OPEN UNIT OR ADJUST SWITCHES WITH POWER SUPPLY, INPUT OR OUTPUT CONNECTED

5.5 Thermocouple Input

Select the range from the table below and set Switch S1 to the required values.

Then select the required setting from the table below for switch S2.

	Switch S2											
	1	2	3	4	5	6	7	8	9	10	11	12
All Ranges	0	1	0	0	1	1	1	0	0	0	0	0

! WARNING !

DO NOT OPEN UNIT OR ADJUST SWITCHES WITH POWER SUPPLY, INPUT OR OUTPUT CONNECTED

5.6 RTD Input

Select the range from the table below and set Switch S1 to the required values.

And then select the required setting from the table below for switch S2.

RTD	Switch S2											
	1	2	3	4	5	6	7	8	9	10	11	12
2 Wire RTD	0	1	0	0	1	0	0	1	0	0	0	1
3 Wire RTD	0	1	0	0	0	0	0	0	1	0	0	1
4 Wire RTD	0	1	0	0	0	0	0	1	0	1	0	0

! WARNING !
DO NOT OPEN UNIT OR ADJUST SWITCHES WITH POWER SUPPLY, INPUT OR OUTPUT CONNECTED

5.7 Output Configuration

Output type is selected with Switch S3.

Output Type	S3 Position
mA Source	Off
Voltage	On

 POWER SUPPLY, INPUT OR OUTPUT CONNECTED

6. CALIBRATING THE CMCP730D

When the unit is shipped the CMCP730D will be calibrated for the input and output types and ranges noted on the side label. If this label is blank then the unit will be calibrated for $4-20 \mathrm{~mA}$ input and $4-20 \mathrm{~mA}$ source output. The side label also indicates the setpoints and relay operation. If these are blank, the default settings are:

Relay 1 energized above 16.00mA (Set Point 1), Led 1 on when Relay 1 energized Relay 2 energized below 8.00mA (Set Point 2), Led 2 on when Relay 2 energized Input units are mA to 2 decimal places. Hysteresis is 0.2 mA . Averaging is on, high burnout. Power on delay is 2 seconds; all other time delays are 0.5 seconds.

6.1 Main menu and Set Point menu

To access the set point menu push and hold both buttons until OK is displayed.
These are the set point menu options, use raise and lower buttons to cycle through:

```
1. SETPOINT 1 (sec 6.2)
2. SETPOINT 2 (sec 6.2)
```

To access the main menu a sequence of button presses must be entered.

> Push and hold in both buttons then: release raise, hold in both, release lower, hold in both, release lower, hold in both, release raise, release lower

These are the main menu options, use raise and lower buttons to cycle through:

1. SETPOINT 1	$(\sec 6.2)$	12. INPUT ZERO	$(\sec 6.7)$
2. SETPOINT 2	$(\sec 6.2)$	13. HYS 1	$(\sec 6.2)$
3. RELAY 1	$(\sec 6.3)$	14. HYS 2	$(\sec 6.2)$
4. RELAY 2	$(\sec 6.3)$	15. OUTPUT OPTIONS	$(\sec 6.9)$
5. LED 1	$(\sec 6.4)$	16. POWER ON DELAY	$(\sec 6.10)$
6. LED 2	$(\sec 6.4)$	17. OFF TO ON 1 (delay)	$(\sec 6.10)$
7. OUTPUT SPAN	$(\sec 6.5)$	18. ON TO OFF 1 (delay)	$(\sec 6.10)$
8. OUTPUT ZERO	$(\sec 6.5)$	19. ON DELAY 1	$(\sec 6.10)$
9. INPUT UNITS	$(\sec 6.6)$	20. OFF TO ON 2 (delay)	$(\sec 6.10)$
10. RELAY TEST	$(\sec 6.8)$	21. ON TO OFF 2 (delay)	$(\sec 6.10)$
11. INPUT SPAN	$(\sec 6.7)$	22. ON DELAY 2	$(\sec 6.10)$

To access the sub menu of one of the main menu options, use raise or lower to cycle to the option required then push and release both buttons. Change the parameter as required.

To return to the main menu, push and release both buttons.
To exit from the main menu and return to run mode, press and hold both buttons for 2 seconds until OK is displayed on the screen.

After two minutes of inactivity from the front buttons when the main menu (or a sub menu) had been accessed, a timeout will occur and the unit will automatically return to run mode.

In run mode, briefly pressing and releasing both buttons will scroll the input value across the display with the units. Any latched relays will also be reset.

6.2 Set Points 1 and 2, Hysteresis Points 1 and 2

The default value for Set Point 1 is 16.00 mA and Set Point 2 is 8.00 mA , the default value for hysteresis points is 0.2 mA . These values can be adjusted in their submenus, and a description of how they interact follows in the next section. Note that the value for hysteresis is the amount away from the Set Point, rather than a point in itself.

6.3 Relay 1 and Relay 2

Each relay can function in one of the following ways (same options for relay 2).
RLY 1 ON ABOVE SP1 (default for Relay 1)
RLY 1 OFF ABOVE SP1
RLY 1 ON BELOW SP1 (default for Relay 2)
RLY 1 OFF BELOW SP1
RLY 1 LATCH ON ABOVE SP1
RLY 1 LATCH OFF ABOVE SP1
RLY 1 LATCH ON BELOW SP1
RLY 1 LATCH OFF BELOW SP1
Latched relays are reset by pushing \& releasing both buttons together in run mode.

6.4 Led 1 and Led 2

The leds on the front panel can be configured in the following ways:

LED 1 ON WHEN RLY 1 ON
LED 1 ON WHEN RLY 1 OFF
LED 2 ON WHEN RLY 2 ON LED 2 ON WHEN RLY 2 OFF

6.5 Output Span and Output Zero

Setting of the zero and span points is non-interactive, so each point need only be set once. Default output values are approximately $4-20 \mathrm{~mA}$ or $2-10 \mathrm{~V}$ out.
A typical calibration sequence would be as follows:

Display	Action
7.OUTPUT SPAN	Apply full scale input. Press and release both buttons together
SPAN ADJUST	Press raise/lower buttons to adjust output value until correct Press and release both buttons together
7.OUTPUT SPAN	Press raise button to change main menu item to 8.OUTPUT ZERO
8.OUTPUT ZERO	Apply zero scale input Press and release both buttons together
ZERO ADJUST	Press raise/lower buttons to adjust output value until correct Press and release both buttons together

When the unit is used to convert a thermocouple input it is important when calibrating to ensure that the thermocouple simulator employed is switched to automatic cold junction compensation and is at the same ambient temperature as the CMCP730D. Note that this is not always easy to achieve, especially if the CMCP730D is mounted in a warm cabinet. An alternative method is to use an icepoint reference and a mV source.

6.6 Input Units

The following units are available to represent the input signal.

$$
\text { \%, mA, V, A, mV, }{ }^{\circ} \mathrm{C}, \mathrm{OHM}, \text { blank (default: mA, } 2 \text { decimal places) }
$$

The number of decimal places can be chosen to allow a bigger input range (with lower resolution) to be represented.

2 decimal places (-327.68 to 327.67) or 1 decimal place $(-3276.8$ to 3276.7)

6.7 Input Span and Zero

In run mode the front panel display shows the value of the input to the CMCP730D. Values can be adjusted to correspond to the full scale and zero scale input values used when Output Span and Output Zero were adjusted.

The default Input Span value is 20.00 mA , and Input Zero value is 4.00 mA .

6.8 Relay Test

This option allows the relays and leds to be tested.
RLY 1 OFF RLY 2 OFF (both leds will be off)
RLY 1 OFF RLY 2 ON (just led 2 on)
RLY 1 ON RLY 2 OFF (just led 1 on)
RLY 1 ON RLY 2 ON (both leds on)
Note that the unit will automatically timeout after two minutes of inactivity from the front buttons and return to run mode.

6.9 Output Options

Averaging and burnout options can be selected. To restore the default values, choose DEFAULT VALUES then press and release both buttons to return to the main menu. From that point on, all values will have returned to defaults.

AVERAGE ON HIGH BURNOUT (default)
AVERAGE ON LOW BURNOUT
AVERAGE OFF HIGH BURNOUT
AVERAGE OFF LOW BURNOUT
DEFAULT VALUES

High burnout values are approximately 23 mA or 11.5 V .
Low burnout values are approximately 0 mA or 0 V .

Averaging is carried out using the following algorithm (a weighted average of the last eight readings, with each new reading every 20 milliseconds):

$$
\text { New Average }=\frac{\text { New Reading }+(7 \times \text { Old Average })}{8}
$$

6.10 Relay Time Delays

There are seven time delays available. The maximum values are 1310.7 seconds, with a resolution of 20 milliseconds.

16. POWER ON DELAY (default 2 seconds)

After power on, relays cannot trip during this time delay

17. OFF TO ON 1 (default 0.5 seconds)
 20. OFF TO ON 2 (default 0.5 seconds)

The trip condition must be seen for this delay before the relay can trip (see picture below).

18. ON TO OFF 1 (default 0.5 seconds)
21. ON TO OFF 2 (default 0.5 seconds)

The trip condition must not be seen for this delay before the relay can reset (see picture below).

19. ON DELAY 1
(default 0.5 seconds)
22. ON DELAY 2
(default 0.5 seconds)
Relay must remain tripped for this delay before being allowed to reset (see picture below).

All 3 delays (or any combination) can be used at the same time if desired. Note that if the relay is tripped, both the on delay timer and the on to off delay timer can hold the relay in the tripped condition until both have expired (see picture below).

7. INSTALLATION

The CMCP730D's input and output circuits are classed as Separated Extra Low Voltage (SELV). This means that they must not be externally connected to voltages exceeding 30 V ac or 60 V dc, nor do they generate voltages above these limits internally. Where a higher voltage input is required a specially designed DIVIDER unit can be used to condition the input signal prior to connection to the process input terminals.

The CMCP730D unit clips directly onto 'Top Hat' (TS35) symmetrical DIN rail. Ideally, mounting orientation should be vertical. Good airflow around the unit will maximise reliability of the instrument.

The use of bootlace ferrules is recommended on wiring terminations.
Do not exceed terminal torque rating of $0.4 \mathrm{Nm}-$ use an appropriate screwdriver. The unit can be removed from the DIN rail by sliding a small screwdriver into the slot at the rear of the enclosure on the lower face and gently levering the metal clip, whilst lifting the unit from the rail.

8. TROUBLESHOOTING

The CMCP730D has some built in self diagnostic functions. Errors encountered will be displayed on screen.

BURNOUT ERROR Check wiring connections of RTD or TC.
EEPROM ERROR Stored data has been corrupted. Push and release both buttons then recalibrate the output options and values.
NO DATA ERROR PARITY ERROR
ADC ERROR CJC ERROR then retry. If still faulty please contact supplier.

8.1 Incorrect Reading

- Check that Unit is configured for the correct Sensor
- Check that Input Scaling is as required.
- Check that Linearisation has been set correctly.
- Check that Thermocouples have correct compensation cables, and polarity.
- Check that RTD is set for correct option 2, 3 or 4 Wire.
- Check that RTD leads are connected to appropriate terminal pins.

8.2 Sensor Failure

- Check that sensor wiring is correct.
- Check Thermocouple polarity.
- Check that all RTD leads are connected to correct terminals.
- Check that the CMCP730D ALM is configured for correct sensor.
- Check that applied voltage is not out of range.
- Check that applied current is not out of range.
- Check that applied millivoltage is not out of range.

9. SPECIFICATIONS (@ $\mathbf{2 5}^{\circ} \mathbf{C}$)

Operating Temperature	0 to $55^{\circ} \mathrm{C}$
Operating Altitude	Sea Level to 2000m
Humidity	0-90\% RH
Power Requirements DC Supply	16 to 30 Vdc
AC Supply	16 to 32Vac
Current Consumption	55 mA @ 24 Vdc (20 mA in \& out)
	90 mA as above with both relays \& leds on $85 \mathrm{~mA} @ 24 \mathrm{Vdc}$ (maximum load, tx supply)
	120 mA as above with both relays \& leds on
	260 mA for 50 ms on 24 Vdc power up
Transmitter Power Supply	22 V to 29V @ up to 24 mA
	Dependant on supply voltage and load
Calibration accuracy	$\pm 0.05 \%$ full scale
Linearity	$\pm 0.05 \%$ full scale
Temperature Stability	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Input Impedance:	
Current Input	15 ohms
Voltage Input	1 Mohm
Millivolt Input	Greater Than 10 Mohm
Thermocouple Burn Out Current:	500nA Nominal
Cold junction compensation accuracy	$\pm 0.5{ }^{\circ} \mathrm{C}$ over operating range
Maximum Voltage Output	11.5 V into a minimum of 7 Kohm
Maximum Current Output	23.0 mA into a maximum of 1 Kohm
Time Response (90\% of step change):	$50 \mathrm{~ms} \pm 10 \mathrm{~ms}$
Mains Rated Relays	3 A resistive at 240 V ac
Unit has full 3 port Isolation to 1 kV be	etween Power Supply, Input and Output.
The unit can also withstand transients	of 2.5 kV for 50μ secs.
Dimensions	$114.5 \mathrm{~mm} \times 99 \mathrm{~mm} \times 22.5 \mathrm{~mm}$ (Hx D x W)
Mounting	DIN Rail TS35
Connections	Screw Clamp with pressure plate
Conductor Size	0.5 to 4.0 mm
Insulation Stripping	12 mm
Maximum Terminal Torque	0.4 Nm
Weight	Approx. 140g
EMC Emissions	BS EN61326
LVD Standards	EN61010-1
Installation Category (IEC 664)	II
Pollution Degree (EN61010-1)	2
Equipment Class (IEC 536)	II

